Distributed expectation aware implicit context processing
September 26, 2010

Stephan Sigg
www.teco.edu
Motivation

Phase 4:
Feedback is broadcast to the network

Phase 3:
Receiver estimates the phase synchronisation level of the received sum signal

Phase 2:
Source nodes transmit to the destination as a distributed beamformer

Phase 1:
Source nodes adjust their carrier phase offset and frequency randomly
This talk ...

- A sensor seldom considered in Pervasive Computing
 - Available in every WSN device
 - Virtually no energy cost for context acquisition

- A Representation of aggregated context data
 - Compact
 - Tolerant for changing network topology
Case study

- 3 USRP software radios
 - 2.4GHz and 900MHz transceiver boards
 - Network connection between devices

- 3 Situations
 - Person in a room
 - Door opened/closed
 - Phone call
Situation classification

- Features
 - RSSi(t)
 - Mean(RSSi, window size)
 - Count(noise peaks, window size)
 - EnergyIncrease(relevant frequencies)

- k-nearest neighbour
 - Distance between reference vector and current sample

- Experiment
 - After training, situations measured 10 times
Results

Results:

<table>
<thead>
<tr>
<th>Situation</th>
<th>mean</th>
<th>median</th>
<th>Standard-deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door (opened /closed)</td>
<td>0.952</td>
<td>0.9513</td>
<td>0.0099</td>
</tr>
<tr>
<td>Presence of individual</td>
<td>0.817</td>
<td>0.8238</td>
<td>0.0455</td>
</tr>
<tr>
<td>Phone call (gsm)</td>
<td>0.900</td>
<td>1.0</td>
<td>0.32</td>
</tr>
<tr>
<td>Door opened (cond.: Empty room)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Door closed (cond.: Empty room)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Door closed (room occupied)</td>
<td>0.832</td>
<td>0.83</td>
<td>0.041</td>
</tr>
<tr>
<td>Door opened (room occupied)</td>
<td>0.976</td>
<td>0.98</td>
<td>0.0184</td>
</tr>
</tbody>
</table>
In-network context processing

- Distributed context processing - assumptions
 - No central node for context aggregation
 - Computational load equally distributed among nodes
 - Minimum overall communication load
 - Robust towards topology changes
In-network context processing

\[|0\rangle \]
(Initial state)
No modification applied

\[R_x(5\theta) |0\rangle \]
(Rotation on the x–Axis)
Environmental measurement

\[R_y(3\theta) |0\rangle \]
(Rotation on the x–Axis)
Environmental measurement

\[R_z(5\theta) |0\rangle \]
(Rotation on the x–Axis)
Environmental measurement

Context representation

Environmental stimuli
In-network context processing

- Neighbourhood:
 - Not euclidean distance
 - Neighbourhood defined by rotations of participating nodes
 - Standard classification approaches feasible
Discussion

Benefits

- Context processing unambiguous
- Robust to network-topology changes
- Cheap aggregation of contexts via rotation
- Neighbourhood of correlated points straightforward
- Rotation represented by two angles

Issues

- Inverse operation practically impossible
 - Extraction of sensor readings from aggregated rotation expensive
- Higher precision requires more precise angles
Questions?

Thank you.
Context representation for public spaces

- Context processing in public spaces
 - Multiple sensors installed in the environment
 - Sensor measurements utilised by several individuals

- Assumptions
 - No central processing entity
 - Processing load fairly distributed
 - Frequent topology changes
 - Distinct expectations
Situation awareness from a communication channel

- Situations and environmental changes impact channel quality
 - Movement
 - Presence of people
 - Wireless access
 - Movement
 - Opened/closed doors or windows
 - Network size

- Impacts on the channel
 - Noise
 - Interference
 - Signal strength
Bloch sphere representation

- Sensor measurement represented by vector in a bloch sphere
 - Rotations are no multiple of 360°
 - Unique rotation for each sensor
 - No multiple of other sensor’s rotation
 - Sensor measurements encoded in multiples of these rotations

- Context aggregation
 - Context = aggregated rotation
 - Nodes successively apply rotations
 - Resulting vector unique
 - Neighbourhood:
 - Neighbouring rotations