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Probability in everyday life

We are confronted with Probability constantly:

Weather forecasts

Quiz shows

. . .
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Example
The treasure behind the doors
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Example
The treasure behind the doors

What shall the candidate do?

Alter his decision?
Retain his decision?
Does it make a difference?

We will consider the solution to this Problem in some minutes
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Notation
Experiments, Events and sample points

The results of experiments or observations are called events.

Events are sets of sample points.

The sample space is the set of all posible events.
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Example
Sample spaces

Three distinct balls (a,b,c) are to be placed in three distinct
bins.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 abc ab ab c c ac ac b
2 abc c ab ab c b ac ac
3 abc c c ab ab b b

14 15 16 17 18 19 20 21 22 23 24 25 26 27

b bc bc a a a a b b c c
b a bc bc a b c a c a b

ac ac a a bc bc c b c a b a
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Example
Sample spaces

Suppose that the three balles are not distinguishable.

Event 1 2 3 4 5 6 7 8 9 10
Bin

1 *** ** ** * * *
2 *** * ** ** * *
3 *** * * ** ** *
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Example
Sample spaces

Indistinguishable sample spaces and indistinguishable bins

Event 1 2 3
Bin

1 *** ** *
2 * *
3 *
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Impossible events

Impossible event

With χ = {} we denote the fact that event χ contains no sample
points. It is impossible to observe event χ as an outcome of the
experiment.
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Probability of events

Probability of events

Given a sample space Π and an event χ ∈ Π, the occurence
probabiltiy P(χ) of event χ is the sum probability of all sample
points from χ:

P(χ) =
∑
x∈χ

P(x). (1)
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Statistical independence

Independence

A collection of events χi that form the sample space Π is
independent if for all subsets S ⊆ Π

P

 ⋂
χi∈S

χi

 =
∏
χi∈S

P(χi ). (2)

Statistical independence is required for many useful results in
probability theory.

Be careful to apply such results not in cases where
independence between sample points is not provided.
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Negation of events

For every event χ there is an event ¬χ that is defined as ’χ does
not occur’.

Negation of events

The event consisting of all sample points x with x 6∈ χ is the
complementary event (or negation) of χ and is denoted by ¬χ.
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Subsumming events

χ1 ∩ χ2 = {x |x ∈ χ1 ∧ x ∈ χ2} (3)

χ1 ∪ χ2 = {x |x ∈ χ1 ∨ x ∈ χ2} (4)
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Mutual exclusive events

Mutual exclusive events

When the events χ1 and χ2 have no sample point x in common,
the event χ1 ∩ χ2 is impossible: χ1 ∩ χ2 = {}.
The events χ1 and χ2 are mutually exclusive.
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Combining probabilities

To compute the probability P(χ1 ∪ χ2) that either χ1 or χ2

or both occur we add the occurence probabilities

P(χ1 ∪ χ2) ≤ P(χ1) + P(χ2) (5)

The ’≤’-relation is correct since sample points might be
contained in both events:

P(χ1 ∪ χ2) = P(χ1) + P(χ2)− P(χ1 ∩ χ2). (6)
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Example
Coin tosses

Question

What is the probability that in two toin cosses either head occurs
first or tail occurs second ?
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Example
Coin tosses

Events coin tosses probability

head - head 1
2 ·

1
2 = 1

4

head - tail 1
2 ·

1
2 = 1

4

tail - head 1
2 ·

1
2 = 1

4

tail - tail 1
2 ·

1
2 = 1

4
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Example
Coin tosses

Events coin tosses probability sum probability

head - head 1
2 ·

1
2 = 1

4

head - tail 1
2 ·

1
2 = 1

4

tail - tail 1
2 ·

1
2 = 1

4
1
4 + 1

4 + 1
4 = 3

4
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Conditional probability

Conditional probability

The conditional probability of two events χ1 and χ2 with
P(χ2) > 0 is denoted by P(χ1|χ2) and is calculated by

P(χ1 ∩ χ2)

P(χ2)
(7)

P(χ1|χ2) describes the probability that event χ2 occurs in the
presence of event χ2.
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Example
Conditional probability
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Bayes Rule

With rewriting and some simple algebra we obtain the bayes rule:

Bayes Rule

P(χ1|χ2) =
P(χ2|χ1) · P(χ1)∑
i P(χ2|χi ) · P(χi )

. (8)

This equation is useful in many statistical applications.

With Bayes rule we can calculate P(χ1|χ2) provided that we
know P(χ2|χ1) and P(χ1).
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Expectation

Expectation

The expectation of an event χ is defined as

E [χ] =
∑
x∈R

x · P(χ = x) (9)
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Example
Expectation

Example

Consider the event χ of throwing a dice. The Sample space is
given by Sχ = {1, 2, 3, 4, 5, 6}.

What is the expectation of this event?

The expectation of this event is

E [χ] =
1

6
· (1 + 2 + 3 + 4 + 5 + 6) = 3.5 (10)
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Calculation with expectations

Linearity of expectation

For any two random variables χ1 and χ2,

E [χ1 + χ2] = E [χ1] + E [χ2]. (11)

Multiplying expectations

For an independent random variables χ1 and χ2,

E [χ1 · χ2] = E [χ1] · E [χ2]. (12)
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Law of large numbers

Law of large numbers

Let {Xk} be a sequence of mutually independent random variables
with a common distribution. If the expectation µ = E (Xk) exists,
then for every ε > 0 and n→∞

P

{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ > ε

}
→ 0 (13)

Probability that the average Sn/n will differ from expectation
by less than ε tends to one.
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Variance

Variance

The variance of a random variable χ is defined as

var [χ] = E [(χ− E [χ])2]. (14)
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Calculation with variance

Add variances

For any independent random variables χ1 and χ2

var [χ1 + χ2] = var [χ1] + var [χ2]. (15)

Multiplying variances

For any random variable χ and any c ∈ R,

var [cχ] = c2var [χ]. (16)
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Example
The treasure behind the doors
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