Algorithms for context prediction in Ubiquitous Systems

Introduction to probability theory

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

November 24, 2008

Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- Algorithms
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approaches
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing

Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- Algorithms
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approaches
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing

Outline

Basics of probability theory

- Introduction
- Notation
- Calculation with probabilities

Probability in everyday life

We are confronted with Probability constantly:

- Weather forecasts
- Quiz shows
- . . .

The treasure behind the doors

?

- What shall the candidate do?
 - Alter his decision?
 - Retain his decision?
 - Does it make a difference?

- What shall the candidate do?
 - Alter his decision?
 - Retain his decision?
 - Does it make a difference?
- We will consider the solution to this Problem in some minutes

Outline

- Introduction
- Notation

Calculation with probabilities

Notation

Experiments, Events and sample points

- The results of experiments or observations are called events.
- Events are sets of sample points.
- The sample space is the set of all posible events.

Sample spaces

• Three distinct balls (a,b,c) are to be placed in three distinct bins.

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	abc	abc		ab	ab	С		С		ac	ac	b	
2		abc		С		ab	ab		С	b		ac	ac
3			abc		С		С	ab	ab		b		b
			ı	'		'	!		!				
14		16											27
b		bc	bc	а		a		a	a	b	b	С	С
	b	а		bc	bc		a	b	С	a	С	a	b
ac	ac	bc a	a		а	bc	bc	С	b	С	а	b	a

Sample spaces

• Suppose that the three balles are not distinguishable.

	Event	1	2	3	4	5	6	7	8	9	10
Bin											
1		***			**	**	*		*		*
2			***		*		**	**		*	*
3				***		*		*	**	**	*

Sample spaces

• Indistinguishable sample spaces and indistinguishable bins

	Event	1	2	3
Bin				
1		***	**	*
2			*	*
3				*

Impossible events

Impossible event

With $\chi=\{\}$ we denote the fact that event χ contains no sample points. It is impossible to observe event χ as an outcome of the experiment.

Probability of events

Probability of events

Given a sample space Π and an event $\chi \in \Pi$, the occurrence probability $P(\chi)$ of event χ is the sum probability of all sample points from χ :

$$P(\chi) = \sum_{x \in \chi} P(x). \tag{1}$$

Statistical independence

Independence

A collection of events χ_i that form the sample space Π is independent if for all subsets $S \subseteq \Pi$

$$P\left(\bigcap_{\chi_i \in \mathcal{S}} \chi_i\right) = \prod_{\chi_i \in \mathcal{S}} P(\chi_i). \tag{2}$$

- Statistical independence is required for many useful results in probability theory.
- Be careful to apply such results not in cases where independence between sample points is not provided.

Outline

- Introduction
- Notation

Calculation with probabilities

Negation of events

For every event χ there is an event $\neg \chi$ that is defined as ' χ does not occur'.

Negation of events

The event consisting of all sample points x with $x \notin \chi$ is the complementary event (or negation) of χ and is denoted by $\neg \chi$.

Subsumming events

$$\chi_1 \cap \chi_2 = \{x | x \in \chi_1 \land x \in \chi_2\} \tag{3}$$

$$\chi_1 \cup \chi_2 = \{x | x \in \chi_1 \lor x \in \chi_2\} \tag{4}$$

Mutual exclusive events

Mutual exclusive events

When the events χ_1 and χ_2 have no sample point x in common, the event $\chi_1 \cap \chi_2$ is impossible: $\chi_1 \cap \chi_2 = \{\}.$

The events χ_1 and χ_2 are mutually exclusive.

Combining probabilities

• To compute the probability $P(\chi_1 \cup \chi_2)$ that either χ_1 or χ_2 or both occur we add the occurence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

Combining probabilities

• To compute the probability $P(\chi_1 \cup \chi_2)$ that either χ_1 or χ_2 or both occur we add the occurence probabilities

$$P(\chi_1 \cup \chi_2) \le P(\chi_1) + P(\chi_2) \tag{5}$$

 The '\(\leq'\)-relation is correct since sample points might be contained in both events:

$$P(\chi_1 \cup \chi_2) = P(\chi_1) + P(\chi_2) - P(\chi_1 \cap \chi_2).$$
 (6)

Coin tosses

Question

What is the probability that in two toin cosses either head occurs first or tail occurs second?

Coin tosses

Events	coin tosses	probability		
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
head - tail	(1) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - head	200	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - tail	25 2 CANY	$\tfrac{1}{2}\cdot \tfrac{1}{2} = \tfrac{1}{4}$		

Coin tosses

Events	coin tosses	probability	sum probability	
head - head		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
head - tail	2 CLIND	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$		
tail - tail		$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$	

Conditional probability

Conditional probability

The conditional probability of two events χ_1 and χ_2 with $P(\chi_2) > 0$ is denoted by $P(\chi_1|\chi_2)$ and is calculated by

$$\frac{P(\chi_1 \cap \chi_2)}{P(\chi_2)} \tag{7}$$

 $P(\chi_1|\chi_2)$ describes the probability that event χ_2 occurs in the presence of event χ_2 .

Conditional probability

Bayes Rule

With rewriting and some simple algebra we obtain the bayes rule:

Bayes Rule

$$P(\chi_1|\chi_2) = \frac{P(\chi_2|\chi_1) \cdot P(\chi_1)}{\sum_i P(\chi_2|\chi_i) \cdot P(\chi_i)}.$$
 (8)

- This equation is useful in many statistical applications.
- With Bayes rule we can calculate $P(\chi_1|\chi_2)$ provided that we know $P(\chi_2|\chi_1)$ and $P(\chi_1)$.

Expectation

Expectation

The expectation of an event χ is defined as

$$E[\chi] = \sum_{x \in \mathbb{R}} x \cdot P(\chi = x) \tag{9}$$

Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

Expectation

Example

Consider the event χ of throwing a dice. The Sample space is given by $S_{\chi} = \{1, 2, 3, 4, 5, 6\}.$

What is the expectation of this event?

• The expectation of this event is

$$E[\chi] = \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = 3.5$$
 (10)

Calculation with expectations

Linearity of expectation

For any two random variables χ_1 and χ_2 ,

$$E[\chi_1 + \chi_2] = E[\chi_1] + E[\chi_2]. \tag{11}$$

Multiplying expectations

For an independent random variables χ_1 and χ_2 ,

$$E[\chi_1 \cdot \chi_2] = E[\chi_1] \cdot E[\chi_2]. \tag{12}$$

Law of large numbers

Law of large numbers

Let $\{X_k\}$ be a sequence of mutually independent random variables with a common distribution. If the expectation $\mu=E(X_k)$ exists, then for every $\varepsilon>0$ and $n\to\infty$

$$P\left\{\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>\varepsilon\right\}\to0\tag{13}$$

• Probability that the average S_n/n will differ from expectation by less than ε tends to one.

Variance

Variance

The variance of a random variable χ is defined as

$$var[\chi] = E[(\chi - E[\chi])^2]. \tag{14}$$

Calculation with variance

Add variances

For any independent random variables χ_1 and χ_2

$$var[\chi_1 + \chi_2] = var[\chi_1] + var[\chi_2]. \tag{15}$$

Multiplying variances

For any random variable χ and any $c \in \mathbb{R}$,

$$var[c\chi] = c^2 var[\chi]. \tag{16}$$

